


Confidentiality and disclaimer

The presentation and documents remain the exclusive property of AZ Delta VZW — RADar.

Communication thereof is wholly confidential. There is no authorization to duplicate this
document nor to make known to a third party any contents thereof.

AZ Delta VZW — RADar is exclusively entitled to apply for a patent of any patentable element
contained in this document.

AZ Delta VZW — RADar disclaims all liability which may arise out of the putting into use of the
information contained in this document, provided it did not assume control thereof.

AZ Delta VZW — RADar disclaims all liability for infringement of industrial property rights which
may arise out of the putting into use of the information contained in this document.

All the information contained in this document is based on reasonable research but does not
guarantee any result.

It is not permitted to make audio and/or photo and/or video recordings during the presentation.



(Why Al in Healthcare?
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(Why Al in Healthcare?

Al as an enabler

* Transforms raw data into meaningful insights

 Combines expertise and experience from
multiple clinicians
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Focus: Data and Research & Innovation (R&I)

RADar COMMITTEE

RADar EXECUTIVE COUNCIL (REC)
EVENTS & LEARNING & CLINICAL RESEARCH & PROCESS PARTNERSHIPS
BRANDING DEVELOPMENT STUDIES INNOVATION TECHNOLOGY
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How does RADar work?

Learning and Innovation Centre AZ Delta, 2020, business unit AZ Delta

RADar: Revolutionary Algorithms & Data — actionable results

BreaCs

Data use to support optimal care & treatment of patients.

Treasure of knowledge and insights - multimodal data: images, text, ECGs, lab
results, wearables, tissue slides,...

ECG Al modeling

Al-based predictions.
11-member multidisciplinary innovation team focused on research.

Starting point: clinical research questions originating from physicians.

Funding (Vlaio, FOD, AZ Delta, grants, Belspo, etc.).

From research to valorization: research > development > implementation.




AZ Delta Central Repository

Pseudonymization,
Informed Consent
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Data Cleaning,
Data Context handling and
Standardization derived information
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The reality of real world data

Challenge
* Physicians write short notes instead of structured data
 Efficiency vs usability for analysis

e Garbage in —> garbage out

Opportunity
* LLMs have become great at analyzing medical unstructured data

e LLM pipeline in development




Translating Algorithms into Clinical Reality

1. Clinical Validity frsp data Train Deploy Moniitor
Does it improve patient outcome?
BEFORE YOU DEPLOY:

® How much value will it deliver?
® How do we deploy it to maximize value?

2. Actionability and Explainability
Are the results understandable and usable?

3. User-Friendliness and Integration
Is it practical and usable for clinicians?



Clinical validity




Actionability and explainability

Violin Plot of Model Predictions per Patient Group

_ 2025: Al as diagnostic test - The breakthrough!
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User-Friendliness and Integration

2024: Integration in Sectra-PACS
2025: First integration in HiX
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| Use Cases
"




Cardiac Suite

Normal sinus rhythm Normal ECG
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Zachi A et al, European Heart Journal (2021) 00, 1-15
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Early detection atrial fibrillation

» Research question: Can we detect atrial fibrillation from a sinus rhythm ECG?

* Goal: Atrial fibrillation causes 6,000 strokes per year in Belgium. The goal is to prevent strokes through early
detection.

Data: Clinical data, ECG Result: 0.76 AUC
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Early detection amyloidosis

* Research question: Can we detect protein buildup from an ECG?

* Goal: Amyloidosis can be halted but not cured. Therefore, early detection is crucial.

Data: Clinical data, ECG Result: 0.8 AUC
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ECG Model Challenges

* Interpretation of model score by — Calibration or thresholding
doctors
 Notyet integrated in EHR — Seamless EHR Integration
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BreaCsS: Al-based CDSS for breast cancer

* Research question: Can we better predict in advance who will Breast cancer = multifactoral disease

benefit from: => Combine multiple data modalities
* Asentinel/axillary lymph node dissection procedure

* Neoadjuvant chemotherapy

e Goal: @
* To avoid unnecessary invasive procedures P —

* To optimize the treatment pathway for each patient

Lymph nodes

Cancer

Nipple




True Positive Rate

0.2

BreaCsS: Multi-institutional meets multi-modal

Receiver Operating Characteristics (ROC) curve

Training Set 3796
AUC=10.74

Test Set 948
AUC =0.72
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BreaCS model Challenges

* Multicentric data — Manual curation, incentive for

* Inconsistent annotations prospective standardization
* Varied data format

 Different coloring

 Redoing the MOC requires ethical - Incentive for CTC and EC to pave
approval the way for Al-based studies

Real world deployment requires more than good models!



Early detection of voice disorders

* Research question: Is early detection of voice disorders possible through a mobile application?

* Goal: To develop technology for integrated care, focusing on optimal pathology detection and treatment.

Data: Clinical data, Voice data Result:
Detection disorder > 0.95 AUC,
Classification disorder ca. 0.75 AUC

hagus (food channel
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Early detection of voice disorders
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Recommended action
Do you smoke?

It is recommended to
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PhonAID model Challenges

Time slot in GP consultation

Digital literacy of patients

Noisy environments

Difficulty of voice disorder

classification

— Limit data input to essentials

— User interface adaptation

—>Trained on augmented data + noise

detection in app

— Expansion with more datasets
— collaborations!



LEAE keaways

Al has major potential when aligned with clinical reality

RADar combines research, engineering, and clinical collaboration

* Real-world validation = essential

Multiple projects now close to

clinical implementation

Engineer Mmeejg Physician g
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louise.berteloot@azdelta.be

radar@azdelta.be
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